Week 4 - Friday

COMP 4290

Last time

- What did we talk about last time?
- Finished AES
- Public key cryptography
- Started number theory

Questions?

Project 1

Spencer Wilson Presents

More Number Theory!

Greatest common divisor

- The greatest common divisor or GCD of two numbers gives the largest factor they have in common
- Example:
 - GCD(12, 18) =
 - GCD(42,56)=
- For small numbers, we can determine GCD by doing a complete factorization

Euclid's algorithm

- For large numbers, we can use Euclid's algorithm to determine the GCD of two numbers
- Algorithm GCD(a, b)
 - 1. If b = 0
 - Return α
 - 2. Else
 - $temp = a \mod b$
 - a = b
 - b = temp
 - 3. Goto Step 1
- Example: GCD(1970, 1066)

Extended Euclid's algorithm

- We can extend Euclid's algorithm to give us the multiplicative inverse for modular arithmetic
- Example: Find the inverse of 120 mod 23
- Let α be the number
- Let b be the modular base

```
Find Inverse(a, b)
\mathbf{X} = 0
lastx = 1
V = 1
lasty = 0
while b \neq 0
     quotient = a \text{ div } b
     temp = b
     b = a \mod b
     a = temp
     temp = x
     x = lastx - quotient * x
     lastx = temp
     temp = y
      y = lasty - quotient * y
      lasty = temp
Return lastx
```

Fermat's Little Theorem

• If p is prime and a is a positive integer not divisible by p, then:

$$a^{p-1} \equiv 1 \pmod{p}$$

Proof of Fermat's Theorem

- Assume \boldsymbol{a} is positive and less than \boldsymbol{p}
- Consider the sequence α , 2α , 3α , ..., $(p-1)\alpha$
- If these are taken mod p_i , we will get (in a different order):
 - 1, 2, 3, ..., **p** 1
 - This bit is the least obvious part of the proof
 - However (because p is prime) if you add any non-zero element repeatedly, you will eventually get back to the starting point, covering all values (except o) once
- Multiplying this sequence together gives:
 - $\bullet a \cdot 2a \cdot 3a \cdot \dots \cdot (p-1)a \equiv 1 \cdot 2 \cdot 3 \cdot \dots \cdot (p-1) \pmod{p}$
 - $a^{p-1}(p-1)! \equiv (p-1)! \pmod{p}$
 - $\bullet a^{p-1} \equiv 1 \pmod p$

Euler's in the mix too

- Euler's totient function is written $\phi(\mathbf{n})$
- $\phi(n)$ = the number of positive integers less than n and relatively prime to n (including 1)
- If p is prime, then $\phi(p) = p 1$
- If we have two primes p and q (which are different), then: $\phi(pq) = \phi(p) \cdot \phi(q) = (p-1)(q-1)$

Take that, Fermat

• Euler's Theorem:

For every \boldsymbol{a} and \boldsymbol{n} that are relatively prime,

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

- This generalizes Fermat's Theorem because $\phi(p) = p 1$ if p is prime
- Proof is messier

RSA

RSA Algorithm

- Named for Rivest, Shamir, and Adleman
- Take a plaintext M converted to an integer
- Create a ciphertext C as follows: $C = M^e \mod n$

■ Decrypt C back into M as follows: $M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n$

The pieces

Term	Details	Source
М	Message to be encrypted	Sender
С	Encrypted message	Computed by sender
n	Modulus, n = pq	Known by everyone
p	Prime number	Known by receiver
q	Prime number	Known by receiver
e	Encryption exponent	Known by everyone
d	Decryption exponent	Computed by receiver
$\phi(\boldsymbol{n})$	Totient of <i>n</i>	Known by receiver

How it works

- To encrypt:
 - $C = M^e \mod n$
- e could be 3 and is often 65537, but is always publically known
- To decrypt:
 - $M = C^d \mod n = M^{ed} \mod n$
- We get **d** by finding the multiplicative inverse of **e** mod $\phi(\mathbf{n})$
- So, $ed \equiv 1 \pmod{\phi(n)}$

Why it works

- We know that $ed \equiv 1 \pmod{\phi(n)}$
- This means that $ed = k\phi(n) + 1$ for some nonnegative integer k
- $M^{ed} = M^{k\phi(n)+1} \equiv M \cdot (M^{\phi(n)})^k \pmod{n}$
- By Euler's Theorem $M^{\phi(n)} \equiv 1 \pmod{n}$
- So, $M \cdot (M^{\phi(n)})^k \equiv M \pmod{n}$

An example

- M = 26
- p = 17, q = 11, n = 187, e = 3
- $C = M^3 \mod 187 = 185$
- $\phi(n) = (p-1)(q-1) = 160$
- $d = e^{-1} \mod 160 = 107$
- $C^d = 185^{107} \mod 187 = 26$
- If you can trust my modular arithmetic

Why it's safe

- You can't compute the multiplicative inverse of e mod $\phi(n)$ unless you know what $\phi(n)$ is
- If you know p and q, finding $\phi(n)$ is easy
- Finding $\phi(n)$ is equivalent to finding p and q by factoring n
- No one knows an efficient way to factor a large composite number
 - Or they're not telling

Future risks

- Public key cryptography would come crashing down if
 - Advances in number theory could make RSA easy to break
 - Quantum computers could make it easy to factor large composites

Practical considerations

- Choose your primes carefully
 - p < q < 2p
 - But, the primes can't be too close together either
 - Some standards insist that p and q are strong primes, meaning that p-1 = 2m and p+1=2n where m and n have large prime factors
 - There are ways to factor poorly chosen pairs of primes
- Pad your data carefully
- Take the example of a credit card number
 - If you know a credit card number is encrypted using RSA using a public n and an e of 3, how do you discover the credit card number?

Upcoming

Next time...

- Key management
- Hash functions
- Colm Oneacre presents

Reminders

- Office hours today start late:
 - 2:30-5 instead of 1:45-4
- Keep reading 12.4
- Work on Project 1
 - Due tonight!