
Week 4 - Friday



 What did we talk about last time?
 Finished AES
 Public key cryptography
 Started number theory











 The greatest common divisor or GCD of two numbers gives 
the largest factor they have in common

 Example:
 GCD( 12, 18 ) = 
 GCD( 42, 56 ) = 

 For small numbers, we can determine GCD by doing a 
complete factorization



 For large numbers, we can use Euclid's algorithm to determine the 
GCD of two numbers

 Algorithm GCD(a, b)
1. If b = 0
▪ Return a

2. Else
▪ temp = a mod b
▪ a = b
▪ b = temp

3. Goto Step 1
 Example: GCD(1970, 1066)



 We can extend Euclid's 
algorithm to give us the 
multiplicative inverse for 
modular arithmetic

 Example: Find the inverse 
of 120 mod 23

 Let a be the number
 Let b be the modular base

Find Inverse(a, b) 
x = 0
lastx = 1
y = 1 
lasty = 0 
while b ≠ 0 

quotient = a div b
temp = b
b = a mod b
a = temp
temp = x
x = lastx – quotient * x 
lastx = temp
temp = y
y = lasty – quotient * y
lasty = temp

Return lastx



 If p is prime and a is a positive integer not divisible by p, then:

ap –1 ≡ 1 (mod p)



 Assume a is positive and less than p
 Consider the sequence a, 2a, 3a, …, (p – 1)a
 If these are taken mod p, we will get (in a different order):
 1, 2, 3, …, p – 1
 This bit is the least obvious part of the proof
 However (because p is prime) if you add any non-zero element repeatedly, 

you will eventually get back to the starting point, covering all values 
(except 0) once

 Multiplying this sequence together gives:
 a ∙ 2a ∙ 3a ∙ … ∙ (p – 1)a ≡ 1 ∙ 2 ∙ 3 ∙ … ∙ (p – 1) (mod p)
 ap – 1(p – 1)! ≡ (p – 1)! (mod p)
 ap – 1 ≡ 1 (mod p)



 Euler's totient function is written φ(n)
 φ(n) = the number of positive integers less than n and 

relatively prime to n (including 1)
 If p is prime, then φ(p) = p – 1
 If we have two primes p and q (which are different), then:
φ(pq) = φ(p)∙φ(q) = (p – 1)(q – 1)



 Euler's Theorem:
For every a and n that are relatively prime,

aφ(n) ≡ 1 (mod n)

 This generalizes Fermat's Theorem because φ(p) = p – 1 if p is 
prime

 Proof is messier





 Named for Rivest, Shamir, and Adleman
 Take a plaintext M converted to an integer

 Create a ciphertext C as follows:
C = Me mod n

 Decrypt C back into M as follows:
M = Cd mod n = (Me)d mod n = Med mod n



Term Details Source

M Message to be encrypted Sender

C Encrypted message Computed by sender

n Modulus, n = pq Known by everyone

p Prime number Known by receiver

q Prime number Known by receiver

e Encryption exponent Known by everyone

d Decryption exponent Computed by receiver

φ(n) Totient of n Known by receiver



 To encrypt:
C = Me mod n

 e could be 3 and is often 65537, but is always publically known
 To decrypt:

M = Cd mod n = Med mod n
 We get d by finding the multiplicative inverse of e mod φ(n)
 So, ed ≡ 1 (mod φ(n))



 We know that ed ≡ 1 (mod φ(n))
 This means that ed = kφ(n) + 1 for some nonnegative integer k
 Med = Mkφ(n) + 1 ≡ M∙(Mφ(n))k (mod n)
 By Euler's Theorem

Mφ(n) ≡ 1 (mod n)
 So, M∙(Mφ(n))k ≡ M (mod n)



 M = 26
 p = 17, q = 11, n = 187, e = 3
 C = M3 mod 187 = 185
 φ(n) = (p – 1)(q – 1) = 160
 d = e-1 mod 160 = 107
 Cd = 185107 mod 187 = 26
 If you can trust my modular arithmetic



 You can't compute the multiplicative inverse of e mod φ(n) 
unless you know what φ(n) is

 If you know p and q, finding φ(n) is easy
 Finding φ(n) is equivalent to finding p and q by factoring n
 No one knows an efficient way to factor a large composite 

number
 Or they're not telling



 Public key cryptography would come crashing down if
 Advances in number theory could make RSA easy to break
 Quantum computers could make it easy to factor large composites



 Choose your primes carefully
 p < q < 2p
 But, the primes can't be too close together either
 Some standards insist that p and q are strong primes, meaning that p – 1 

= 2m and p + 1 = 2n where m and n have large prime factors
 There are ways to factor poorly chosen pairs of primes

 Pad your data carefully
 Take the example of a credit card number
 If you know a credit card number is encrypted using RSA using a public n

and an e of 3, how do you discover the credit card number?





 Key management
 Hash functions
 Colm Oneacre presents



 Office hours today start late:
 2:30-5 instead of 1:45-4

 Keep reading 12.4
 Work on Project 1
 Due tonight!
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